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On the Derivation of the Incompressible 
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Hamiltonian Particle Systems 
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We consider a Hamiltonian particle system interacting by means of a pair 
potential. We look at the behavior of the system on a space scale of order e- ~, 
times of order e -2 and mean velocities of order e, with e a scale parameter. 
Assuming that the phase space density of the particles is given by a series in e 
(the analog of the Chapman-Enskog expansion), the behavior of the system 
under this rescaling is described, to the lowest order in e, by the incompressible 
Navier-Stokes equations. The viscosity is given in terms of microscopic 
correlations, and its expression agrees with the Green-Kubo formula. 

KEY WOR DS: Hydrodynamic limit; incompressible Navier-Stokes equations; 
particle systems. 

1. INTRODUCTION 

A system of many interacting particles moving according to the Newton 
equations of mot ion can be described on a space scale much larger than the 
typical microscopic scale (say, the range of the interaction) in terms of 
density, velocity, and temperature fields, satisfying hydrodynamic equations 
such as Euler or Navier-Stokes equations. The scale separation and the 
local conservation laws are responsible for this reduced description. In fact, 
on the macroscopic scale the quantities which are locally conserved (slow 
modes) play a major  role in the mot ion of the fluid. The derivation of the 
Euler equations is based on the assumption of local equilibrium. On times 
of order e-~, the system is expected to be described approximately by a 
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local Gibbs measure, with parameters varying on regions of order e - t ,  
e being a scale parameter. The local equilibrium assumption implies that 
the parameters of the local Gibbs measure satisfy the Euler equations. I~'-'~ 
The microscopic structure (the potential) appears only in the state equa- 
tion which links pressure and internal energy to the other macroscopic 
parameters. The microscopic locally conserved quantities converge, as 
e -*0 ,  by a law of large numbers, to macroscopic fields. To make this 
correct, the many-particle Hamiitonian system must have good dynamical 
mixing properties to approach and stay in a state close to the local equi- 
librium. At the moment it is not understood how to provide such proper- 
ties. Therefore the only rigorous results are obtained by adding some noise 
to the Hamiltonian evolution 13~ (see ref. 4 for a review on the rigorous 
results for stochastic systems). 

The situation is very different for the derivation of the Navier-Stokes 
(NS) equations. These equations, which describe the behavior of a fluid in 
the presence of dissipative effects, do not have an immediate interpretation 
in terms of scale separation. This is not surprising because the NS 
equations do not have a natural space-time scale invariance like the Euler 
equations. In fact, to see the effect of the viscosity and the thermal con- 
duction one has to look at times such that neighboring regions in local 
equilibrium exchange a sensible amount of momentum and energy. Simple 
considerations show that the right scale of time is e.-2. On the other hand, 
we cannot hope to find the Navier-Stokes behavior under the rescaling 
x ~ e Jx and t ~ e- '- t  since the NS equations are not invariant under this 
scaling, due to the presence of the transport terms. Therefore we consider 
the incompressible limit simultaneously, because the incompressible Navier-  
Stokes equations (INS) have the required scaling invariance. 

To explain this point let us recall the derivation of the hydrodynamic 
equations from the Boltzmann equation, which describes the large-scale 
dynamics of a gas in the low-density or kinetic regime. In this regime the 
typical scales are the mean free path and the mean free time, and every 
particle undergoes collisions only once in a while. To recover the hydro- 
dynamic behavior one has to look at the system on space and time scales 
which are very long with respect to the mean free path and the mean free 
time, in such a way that every particle can have so many collisions that in 
the macroscopic time it has thermalized. To be precise, it has been proved 
in ref. 5 that, if we rescale both space and time by e-~, the solution of 
the rescaled Boltzmann equation looks like a Maxwellian with parameters 
solving the Euler equations, for small e. Now e, is the scale separation 
parameter between the mean free path and the typical macroscopic scale. 
To get sensible viscous effects, the time has to be of order ~- ~ compared 
to the Euler times, hence one has to consider the parabolic space-time 
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scaling ( x = e - ~ x  ', t=e -2 t ' ) .  On this time scale one makes the transport 
term finite by taking the Mach number 16j Ma = U/c (where U is a typical 
velocity and c is the sound speed) of order e. This corresponds to the 
incompressible regime. In ref. 7 (see also ref. 8 for the nonsmooth case), it is 
proved that, if u(x, t) is a sufficiently smooth solution of the incompressible 
Navier-Stokes equations on a torus for t~ [0, to], one can construct a 
solution f~ to the rescaled (parabolically) Boltzmann equation such that, 
for t~ [0, to], 

II f~" - M(p,  eu, T)II ~_ < ce 2 (1.1) 

where p and T are given positive constants. 
In the incompressible regime the macroscopic state is described by a 

divergenceless velocity field u(x, t), constant density p, and constant tem- 
perature T. The pressure p(x, t) appearing in the equations is no longer 
related to the thermodynamic parameters by means of a state equation, but 
has simply the meaning of a Lagrangian multiplier for the constraint 
div u = 0. The INS equations are 

div u = 0 (1.2) 

Ou 
p - ~ +  pu . V u -  q Ju  = - V p  (1.3) 

r/ is the viscosity and microscopic interactions enter only into its 
determination. 

The above dimensional analysis of course can be carried out as well 
for a particle system. Along this path, in this paper we give a formal 
derivation of the INS from a Hamiltonian particle system under the 
parabolic rescaling, in the low-Mach-number regime. 

The main ingredient is the assumption that the nonequilibrium density 
can be expressed as a truncated series in the parameter e. We follow a 
procedure inspired by the Hilber t -Chapman-Enskog expansion used to 
construct the solution of the rescaled Boltzmann equation. From the 
physical point of view we think of the system as being in local equilibrium 
with parameters which are themselves given by a series in e. However, there 
is a nonhydrodynamic correction to the local equilibrium which depends 
on the nonconserved quantities in the system (fast modes) and we assume 
that this correction does not affect the first order in the expansion, that is, 
at the first order the system is still described by a local Gibbs measure with 
parameters which differ from constants by terms of order e. This is strictly 
related to the incompressibility assumption and would be false in the case 
of finite Mach number. This assumption is the translation of (1.1) to the 
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particle system case. On the other hand, the nonhydrodynamic corrections 
in the second order are important on the scale e-2 and give rise to the NS 
terms. It is worth to mention here that very strong and rather uncontroll- 
able assumptions are necessary even to give sense to the formal calculations 
below: 

(i) The space of the invariant observables for the microscopic 
dynamics reduces to the locally conserved quantities, mass, momentum, and 
energy. 

(ii) Some equilibrium time correlation functions decay sufficiently 
fast. 

Such assumptions are far from being sufficient for a mathematical 
proof. Actually, in the only case for which we have a rigorous proof (see 
Section 4), we use much more on the generator of the dynamics, such as the 
spectral gap and logarithmic Sobolev inequalities. Most of the argument 
below is based on the assumption that the inverse of the generator makes 
sense at least on some suitable set of observables. 

Under this assumptions it is possible to determine the form of the lowest 
nonhydrodynamic correction and thus conclude that the conservation 
equations are well approximated by the INS for e small. 

We only examine the expected values of the empirical fields and do 
not look for a law of large numbers. The reason for this choice is that, as 
explained below, the quantity 

~d-I ~ Vif(Xi-- X) (1.4) 
i 

is the candidate for approximating the mean velocity field. In dimensions 
1 and 2 the fluctuations of momentum are of the same order as or even 
bigger than this quantity. Hence it cannot converge to a deterministic field 
and a law of large numbers is not true. The situation is different in higher 
dimension, but we confine ourselves to the analysis of the averages. 

Our derivation gives the viscosity coefficient r/ in terms of a global 
equilibrium time correlation function 

1 ~'- dr~dr (,~"-~(r r)ff"2(0,01) (1.5) tl =~-~ 

where ~?, is the "modified" velocity current tensor defined in Section 3. The 
fluctuation-dissipation theorem relates the transport coefficients to time- 
integrated correlation functionsJ 9" ~ol The expression we find agrees with the 
Green-Kubo formula for the viscosity. We also obtain the Green-Kubo  
formula for the bulk viscosity ~, but as is well known, it does not appear 
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in the INS. In our case the viscosity is not a function of space and time, 
since the correlation is evaluated at the global equilibrium, as a conse- 
quence of the fact that we are studying the incompressible regime, where 
density and temperature are constant. As a by-product of our analysis, we 
find the analog of the Boussinesq condition for the first correction PI of the 
thermodynamic pressure P,:. In fact we have 

VPI = 0  (1.6) 

Moreover, the conservation law for the energy gives, in the incompressible 
approximation, an equation for the first correction to the temperature TI, 

c(cg, Ti +u .  T1)=~,JTI  (1.7) 

where x is the conductivity, which is given again in terms of an integrated 
equilibrium time correlation, and c is the specific heat at constant pressure. 
Our approach to derive the Green-Kubo formulas seems similar to the one 
followed by Green. (11) It is an alternative way to obtain them with respect 
to the linear response theory of Green and Kubo. A different derivation is 
due to Zubarev, (12) which proposes a specific form of the nonequilibrium 
distribution allowing one to derive the expressions of the transport coef- 
ficients as well as the Navier-Stokes corrections. (13) 

Finally we remark again that, to try to prove the hydrodynamic limit 
under the above rescaling, we need ergodic properties of the Hamiltonian 
system even stronger than the ones needed for the Euler regime. Of course 
they are beyond the available mathematical techniques. It would be very 
interesting to prove the analog of the result of ref. 3 in this case, i.e., 
that adding a suitable noise to the dynamics, the hydrodynamic limit is 
achieved. Even this is far from being at hand, because there are many 
technical difficulties in dealing with nongradient systems in the continuous 
space. 

It is therefore natural to try to explore this setting in some simple 
lattice models with stochastic dynamics which have all the required ergodic 
properties. This program has been successfully accomplished in ref. 14 for 
the asymmetric simple exclusion process (ASEP) (see refs. 4 and 15 for 
references) in dimension bigger than 2. In fact, the ASEP is probably the 
simplest nontrivial model for which an analog of the incompressible limit 
makes sense. In this model there is only one conserved quantity, the density, 
and the analog of the Euler limit is well known. (16) The limiting equation 
for the density is the nonviscous Burgers equation. The diffusive scaling 
limit presents mostly the same difficulties (absence of scale invariance) 
discussed above. Moreover, from the technical point of view, the study of 
the model is made difficult by the fact that it is a nongradient system (in 

822/74/5-6-3 
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the sense that the current is not the "gradient" of some function; see 
ref. 4) and the dynamics does not satisfy the detailed balance with respect 
to the invariant product measure. In ref. 14 we consider an initial state 
which is a product measure with a density profile with spatial fluctuation 
of order e (the analog of the assumption of mean velocities of order e in 
Hamittonian systems). Using the Varadhan method tm of dealing with 
nongradient systems, the entropy method, ~8'3J and a kind of multiscale 
analysis, it is possible to prove that, with probability 1, the fluctuation of 
the empirical density around the constant profile is of order e and the 
rescaled fluctuation of density, after a suitable space shift of order e - ' ,  
satisfies the viscous Burgers equation in the limit e ~ 0 .  An important 
feature, to our purposes, is that the diffusion matrix computed in ref. 14 is 
strictly bigger than the one of the corresponding symmetric process. This 
means that the diffusivity of the model is not just that due to the assumed 
stochasticity of the model (the symmetric part), but there is a contribution 
from the "deterministic" motion of the particles (the asymmetric part), 
which can be interpreted as a "Navier-Stokes" contribution in analogy with 
the Hamiltonian case. This is in agreement with the heuristic Green-Kubo  
formula for this model, as computed in ref. 19. 

2. THE C O N S E R V A T I O N  LAWS 

We consider a system of N identical particles of unit mass in a cube 
of size e-~ in •a, with periodic b.c., interacting through a pair central 
potential V of finite range. After rescaling space as e -  ~ and time as e -  2 the 
Newton equations become, for i =  1 ..... N, 

dx---2 ( t ) = e -  lvi(t ) 
dt 

dvi - 2 
d---~ (t)= -~ y, V V ( ~ - ' ( x , - x j ) )  

iv~ j 

(2.1t 

The number of particles N is assumed to be of order e -d to keep the 
density finite. The total number of particles, the d components of the 
total momentum, and the total energy are the conserved quantities. We 
construct the corresponding empirical fields: 

Empirical density 

zO(x) = ~a y. 6 ( x , -  x)  (2.2) 
i 
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Empirical velocity field density 

z~(x) = d ~  v76(x,-x), 
i 

cc = 1 ..... d (2.3) 

Empirical energy density 

za+'(x)=E"~�89 ~ V(e - ' l x i - x j l ) ]6 (x , - x )  (2.4) 
i . ] ~  i 

Their meaning is as follows: The average of the integral of z" over a small 
region is equal to the average number of particles, momentum, energy 
associated to the region. We will write also 

with 

zU(x) = ea ~, 6(xi-  x) zf (2.5) 
i 

z ~  - ' -  v~, a = l  ..... d; z/d+l= 1 [ 2 ] _~, - ~ v, + ~ v ( ~ - '  I x , - x j l )  
i ~ j  

The generalized functions z" on the phase space are expected to be 
approximated, to the lowest order in e, by the macroscopic hydrodynamic 
fields, in the sense that, with probability 1, for any smooth function f, we 
have 

f dx z(x)f(x) = J b(x) f(x) + o(1 ) (2.6) 
( .  

dx 

where o(1) denotes a quantity going to 0 as ~ 0 ,  z={z~}, and 
b = {p, U, e}, the macroscopic density, velocity field, and energy, respec- 
tively. The empirical fields satisfy the following local conservation laws, 
which are obtained differentiating z'(x, t) with respect to the time and 
using the Newton equations: 

d a , ed~ Of 
--edt ~'f(xi)=e-i i --(xi)ox~ v, ~ (2.7) 

dt i i 

- ~ - '  ~ V~V(e- ' (xi-xj)) f(x ,)  t (2.8) 
. i s  i ) 
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d a 

I, } 
--~s- ~. V,V(s-'(xi-xj))vrf(xi) (2.9) 

Here V#V(~)=OV(~)/Or Because of the symmetry  properties of the 
potential  we can write, as usual, the second term in the r.h.s, of (2.8) as 

_ �89 2 ~ V# V(s - ' (x , -  xj))[f(x,) - f ( x j ) ]  (2.10) 
i r  

Since f is slowly varying on the microscopic scale, we can write, with 
~ i  ~ ~ -- l x i ,  

f (s r  -- f(sCj) = ~, ~ (xi) s[r -- r 
), O X i  

a'f + .Z., j ;  g,~; (x,) ~-'[r - r [ r  r  

+ 83D(xi- x/) + O(e4) (2.11 ) 

where 

a'f 
D(x,-xj) = ~ axe' 8x; 8x~ ( x , ) [ ~ ' -  r [ r  r  [r - r 

Due to the symmetry  of the potential  the second term of the Taylor  
expansion o f f  does not contribute and the last term of Eq. (2.8) becomes 

I 1~,1 Of -~s Z Z~x,/~ (x,) ~e~'(e '(x,-x/))+O(s) (2.12) 
i . j  7 

with 

~u~(r = - V  a V(r r (2.I3) 

An analogous computa t ion  can be done for the energy equation. The 
general form of the rescaled local conservat ion laws is 

8 'f.x 12.141 

where w/~*, fl = 0 ..... d +  1; k = 1 ..... d are the currents associated to the fields 
z a and are explicitly given by 



Incompressible Navier-Stokes Equation 989 

wOk(x) = e a ~ 6(X, -- X) V~i (2.15) 
i 

i k j .1 

/3 = 1 ..... d (2.16) 

w~+ ,,%,c)= E ~  f ~-,,+, , } ~v~ i + �89 ~'k(e-'(X~--xj))~ [V~ + V) ']  (2.17) 
�9 j , ~ ,  

We put also wPk(x) = 5 a Zi 6(Xi-- X) W~ k. 
The empirical fields z'(x) are approximate integrals of the motion in 

the sense that, defining the Liouville operator in terms of microscopic 
variables ~i = e-  ~x~ as 

OV 
(2.18) 

and denoting by ~,." the quantities z~' as functions of the microscopic 
variables ~;, it follows from the previous calculation that 

Le [sa~  f(s~i) ~ ] = O ( s )  (2.19) 

We call the observables with this property local integrals of motion. This is 
consistent with the following definition of the local equilibrium distribution 
on the phase space (in microscopic variables): 

d + l  

G = Z - '  exp ~ ~ 2"(e~,) ~ (2.20) 
i ~ = 0  

with Z the normalization factor. In fact the distribution G is locally 
stationary for Le in the sense that 

LeG = 0(5) (2.21) 

In other words, if we look at a region around the point x microscopically 
very large but .macroscopically small, the system appears to be in equi- 
librium in this region and its distribution is the Gibbs measure G restricted 
to the variables localized there. In regions of this type we can follow the 
evolution of the system for very large microscopic times r such that it 
makes sense to consider ergodic properties of the unitary group S~ 
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generated by L~'. For any local observable ~ of mean zero with respect to 
G we put 

f2 ~ =  lim ~-J d~' S~,~b (2.22) 

represents the part of ~b which is invariant under S t. 
We assume that the set of all the invariant local observables contains 

only combinations of the empirical fields associated to the particle number, 
momentum, and energy, and any function of them. 

To make this concept more precise, we refer to refs. 20 and 4, which 
introduce the Hilbert space of the local observables equipped with the 
scalar product 

(r r  dx [<r >-  <~><~>] (2.23) 

Here < . )  is the average on the local Gibbs measure. Our assumption 
means that, introducing the projector on the invariant space defined as 

d + l  

~(~ = ~ (~, z')(z, z),,.' z" (2.24) 
I' = 0  

where (z, z)-1 denotes the inverse of the matrix with elements (z,, z,.), then 

q~ = ~@~b (2.25) 

To show how the conservation laws give the hydrodynamic equations 
(INS), we follow a procedure similar to the one Chapman and Enskog 
proposed to approximate the solutions of the Boltzmann equation. Let us 
start with the phase space distribution function F, for the rescaled system, 
which satisfies the Liouville equation 

aFt. 
----: = ~ - 25~ (2.26) 
at 

where 5 ~ is the adjoint, w.r.t, the Liouville measure, of the Liouville 
operator on the phase space, formally given by s - 2 ' .  

Writing F~. as a series in e, F~=Y'.,,e"F", and substituting it in (2.26), 
we get the diverging terms e-'-2'*Fo and e - ~ * F t .  Therefore we are 
forced to put ~ * F o = 0 ,  hence Fo has to be the global equilibrium. 
Moreover, e - ~ * F ~  is finite if f f *F t  = O(e). This means that the term of 
order e has to be a function only of the empirical fields, and the nonhydro- 
dynamic terms are of order &. 
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To single out the nonhydrodynamic  contr ibution to F~ let us decom- 
pose F, into a part  which is Gibbsian with parameters  slowly depending on 
the microscopic variables and depending on e by means of a series in e, and 
a remainder.  More  explicitly, we put 

F,: = G~ + e2GoR ~ (2.27) 

with 

G~=Z~lexp{~2,(xi ,  t)z~}; 
i ,u  

2~'(x, t)= ~ g'2~(x, t); 2g = const 
n ~ 0  

(2.28) 

Go is the zeroth-order  term in the expansion, and so, as explained before, 
is the global equilibrium. We include all the hydrodynamic  terms in G~ and 
we can assume that in R, there are no terms which are combinat ions of the 
invariant  quantities z = with coefficients depending on the macroscopic  
variables, since these terms are already present in G,. In other words, we 
put 

R, = 0 (2.29) 

We also assume that for any t > 0 

R~(t) = R(t) + O(~) (2.30) 

We need an explicit expression for R in terms of the empirical fields, so 
that, inserting (2.27) in the conservation laws averaged with respect to F~, 
we can get closed equations for the empirical fields up to order ~. To  find 
such an expression, we insert the expansion (2.27) for F, in the Liouviile 
equat ion (2.26) and integrate on time 

f2 [G~(t)-G~(O)]+e'-Go[R~.(t)-R~(O)]= [~-2..~*G,+ ~*GoR~] (2.31) 

The LHS of (2.31) goes to 0 in the limit ~ ~ 0, since the only term of order 
1 is constant  in time due to the assumptions on 2o. Hence we have 

{~- 's  + s = - 5~ + O(a) (2.32) 

where gl = Y~j.~, 2]'(xi, t)z~: and we have used 

G~.=Go{I + e [ g , -  ( g , ) ]  +eZh} + O ( e  3) (2.33) 

Here h is a function of the invariant fields and ( . )  is the average w.r.t. Go. 
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Since g~ is a linear combination of the invariant quantities z with 
coefficients depending on the macroscopic variables, the action of ~ *  on 
it gives a linear combination of the currents w with a factor e. Therefore the 
first term in the LHS of (2.32) is of order 1. Moreover, for the same reasons 
the second term goes to zero. In conclusion, R satisfies the equation 

. ~ ' * R -  z Y~-~-~(xi, s ) ( 1 - ~ ) w ~  ~' = 0  (2.34) 
i l l ,  ~.' 

We assume that there exists a unique solution R(t)  to (2.34) such that 
/~(t) = 0, which we write formally as 

�9 , u , 7  

This is the assumption we really need on the inverse of ~ *  to get the 
result. In the stochastic model of Section 4 the nongradient method 
provides a way to construct such a solution. 

3. I N C O M P R E S S I B L E  N A V I E R - S T O K E S  E Q U A T I O N S  

The incompressible limit corresponds to the assumption that the 
velocity field is small compared with the sound speed. In other words, we 
assume that U"(x, t )=  (ZJ'(X))Fa,I, ~ =  1 ..... d, starts with a term of order 
e. Under the assumptions on F,, this corresponds to choosing 2~ = 0 for 
p =  1 ..... d. On the other hand, one finds U"(x, t ) =  ~ ~ p T 2 t ( x ,  t) + 0(~ 2) 
with T, the constant temperature of the Gibbs state Go, given by ().o a+ ~ ) -  
and p the constant density of the Gibbs state Go corresponding to the 
constant chemical potential 2o ~ We denote by uU(x, t) the rescaled velocity 
field given by uJ'(x, t ) -  i ,, - -~TAj(x,  t). In this situation the continuity equation 
reduces to the incompressibility condition div u = 0. To obtain it, we start 
from the conservation law for the empirical density (2.7) and we take the 
expectation with respect to the nonequilibrium measure F~.(t), 

i / Ft ( t )  \ i Ik~(O) 

=e - l  ds e d (xi) v (3.1) 
i ,k  i / Ft (s)  

Using (2.27), (2.28), and (2.30), we see that the LHS of (3.1) goes to zero 
and (3.1) becomes 
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, o f  fods(g,Z k=,L ~(xi)  vki) 

' ( z  "+' i ,) =Io as E ,q'Ixj, t) z;~ Z . 1,=0 i k = l  ~ ( x i )  l) = O ( ~ )  (3 .2 )  

where ( . )  is the average with respect the Gibbs measure Go. Since Go is 
Gaussian in the velocities, the terms with /~ =0,  d +  1 do not contribute 
(they are averages of odd polynomials in v) and the LHS of (3.2) becomes 

( ,,.ka e a ~  ~ ).;'(xi, t)--af ,, k \  =1 8-v~'(x')v'vi/ (3.3) 

Since the average on Go of viv ~ ~' k contributes only for k = p, in the limit ~ --, 0 
we have 

fodSf dx L O(PU") (x,t)f(x) =0 (3.4) 
I l = I 0"~"I~ 

for any test function f and for any t. Hence 

div u = 0 (3.5) 

We examine now the second conservation law (2.8). By averaging as 
before, for fl = 1 ..... d, we get 

k = 1 .ir i F~(s) 

+ O(s) (3.6) 

Using the assumptions on F~.(t) we see that the LHS is of order e, since the 
term of order 1 vanishes because 2g are constant. It is convenient to rewrite 
the integrand in the RHS of (3.6) as 

(3.7) 

Using the assumptions (2.27)-(2.30), we have 

f. - l ( wf lk  )1~ = E - I ( wf lk  ) G e ~- F, ( wflk  R e  ) (3.8) 
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We introduce the currents ~,/~k as given by the expression (2.16) with the 
velocities v; replaced by vi = v i - e u ( x i ) .  Then 

*k (3.9) w~k = ~,~k + ~h,k(xi) u~ix,) + ~P(x,)  ~ + ~u~(x,) v, 

For  the symmetry  of the measure G, we have (~,t~k(x))a = O(e 4) if k :/:/L 
The average of ~,pt~, /~ = 1 ..... d, with respect the local Gibbs  state G~. is, by 
the virial theorem, the thermodynamic  pressure P~. in the state G~.. ~2~) 
Therefore Eq. (3.6) and assumption (2.30) imply 

l I dx Vf(x)  U'(x,  s) = O(~) (3.10) 

Since P~ is a function of the thermodynamic  parameters  2,, we can expand 
it in series of e as ~,k ~kpk, where Pk = 1/k! (dkU/&~)l~.=o . We have that  
Po is constant  since it is a function of the constants  2 0 and ).~+ ~, while 

a+ l Opt. ~=o s ,=  y. 
It=O 

In order to fulfill (3.10) for any test function f,  P~ has to be constant.  
To  determine the equat ion for tit'(X, I), we have to rescale the empiri- 

cal velocity field. This means that we have to look at the empirical field 

- ' ( X ) = ~ - I ~ ' I  2 V~(5(Xi-- X), Or= 1 ..... d 
i 

We proceed as we did before to obtain (3.6), but we have to look at the 
explicit form of the term O(e) because it has to be divided by e. We have 

i / hi: l /)  i / / ' ~ 1 0 )  

=~.-'- cts c '~  ~ ( x , )  v~v~ + ~m~k(~-'(X,--x~t) 
k= 2 j e i  i I . " I - ~ 1  .~ ) 

Ii + ds\~e ~, veg(~-~(xi-x~))D(x,-X~) +O(~) (3.11) 
i :r j / / - ~ ( x )  

This equation, to the lowest order in e, reduces to the Navier -S tokes  
equat ion for the velocity field u. The argument  is the following. The LHS 
of (3.11 ) is given by 

f d x f ( x )  p [u (x ,  t) - u(x, 0)]  (3.I2) 

up to terms of order e. 
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To get the INS, we have to compute again the nonequilibrium average 
of the velocity current tensor w/~k, but now there is a factor ~-2 in front of 
it. Therefore we see that in this case also the terms of order ~2 in (2.27) 
have to be taken into account. First of all we observe that the term 
containing D goes to 0 as e--* 0 because the lowest order is given by an 
average with respect to Go (Gibbs measure with constant parameters), 
hence it vanishes because it contains derivatives off i  The other terms are 
at least of order ~, hence do not contribute to the lowest order. 

Moreover, we have 

g- 2 ( wflk(X) ) Gc'q- ( |t'[Ik(x) R,~) 

= ~-  2 (iT,:~k) ~ + pu:~u k + (w/~kR,:) + O(e ) 

= ~ - 2 P o + e - l P l + P 2 + p u a u k + ( R w l ~ k ( x ) ) + O ( e )  (3.13) 

The first two terms of (3.13) do not contribute to the INS, because Po and 
P~ are constant. The fourth term in (3.13) gives the nonlinear transport 
term, while P2 represents the second-order correction to the thermo- 
dynamic pressure P~ and gives rise to the unknown pressure p appearing 
in the INS. 

The last term in the RHS of (3.13) is determined by R, the non- 
equilibrium part of the distribution F,:, which takes into account the fast 
modes in the system, namely the nonconserved quantities. They appear at 
the hydrodynamic level only through dissipative effects and determine the 
expression of the transport coefficients. 

To compute it, let us first introduce ~?,ak = fi-,ak ;~C,/~k and notice that 
(2.29) implies 

( R ~ w ~ m ( x ) )  = 0  (3.14) 

Again by (2.29) we can use the "identity" (L,a*)-~ L,a*R = R and (2.34) to 
get [recall the notation introduced after (2.17)] 

k=l  ~ 

( ) ff.l~k OJ" 

�9 k= l  

i 0: ) (xj, s)(l -~)wJ"s a- ,:v~ k ~ (x,) (3.15) 
.u=0 / ,k=l . i 

We remark that .L#-~ is "well defined" on ~?, by the assumptions discussed 
in Section 2. 
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To find the expression of the transport coefficient, we consider 

, 

0,~'1' = f dy-~)/ (y,s) r e-a dz d-~k (z,(l~'/'/(x).~q~-h~'tlk(z)) (3.16) 

Since the Gibbsian state Go is invariant under translations on R a, we have 

RHSof(3.16)=fdy~y~(y,s)fd~ (y+e~)(~,,,,(O)s ,~t~k(~)) (3.17) 

where we have changed the variable z in ~=e-~(z-y)  absorbing the 
factor e -d. Hence, provided that (ff,"z(0)s t~k(~)) decays fast enough 
for large ~, up to O(e) we have 

RHS o f (3 .16 ) :  f dy~(y ,s , f~fyk(y)Idr  (~,u'(O, LP-'ff, a~(r (3.18, 

To conclude the argument, we transform ..LP -~ in a time integral of 
exp(t.L,('): 

E - (~;,"(0) ~ - , ~ , / ~ ( r  ) = dr (~;,"'(~, r) ~/Jk(0, 0 ) )  (3.19) 

The symmetries of the microscopic current-current correlations imply 14~ 
that the correlations for /2=0,  d +  1 vanish and 

f dr (~i,,a(~, r) a,P~(O, 0) )  = c(z)[fkt6p,, + 6k,,6tji] + C'(Q 6t~,ft~ (3.20) 

Therefore the time integral of (3.20) has only two independent coefficients, 

dz c(r)= 2qT; dr c'(r)= 2T (-~1 q (3.21) 

where ~1 and ( are the shear viscosity and the bulk viscosity, respectively. 
They are finite if the correlations decay sufficiently fast to make the time 
integrals in (3.21) convergent. Notice that the subtraction of ~ . ' ~  has been 
crucial, because the self-correlation of the slow part of the current does not 
decay in time. 
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Since we already know that div u = 0 ,  the term proportional to the 
bulk viscosity does not appear in the limiting equation. Putting all the 
terms together, we have the following equation to the lowest order in e: 

f dxf(x)  p[u%~c, t ) -  urn(x, 0)] 

,oj{ 
- q  ~, r + ~),k (. ' J p(y,s) 

(3.22) 

for any test function f,  and hence the incompressible Navier-Stokes 
equation. The viscosity is given by 

r l = ~  f :  dr f ar <,v,'2(r z),r,'2(0, 0)> (3.23) 

and is independent of the space coordinates because the current-current 
correlation involved is computed at the global equilibrium. 

The computation gives also the Green-Kubo formula for the bulk 
viscosity ~, 

(3.24) 

The usual expression given in ref. 4 is recovered using the explicit form of 
the projector :~. 

By means of the arguments developed before it is possible to find an 
equation for the first correction to the kinetic energy. We will use below the 
following remark on the conservation of the mass. Since the density current 
is a locally invariant field, taking into account (2.29), it follows that the 
nonequilibrium average of (2.15) will be determined only by the Gibbsian 
part G~. Thus the equation for the averages is 

dxf(x)[p~.(x, t)-pAx,  O ) ] = -  e -t dxdiv(p~u,:)f(x) (3.25) 

where 

Pc = (z~ and " �9 p ~ u , : = ( z  ~' a~, p = l  ..... d 

Now we consider the conservation law for the energy (2.9). We are 
interested in the first correction to the energy, since at zeroth order the 
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energy is a constant,  which we call Co. Therefore we look for the equat ion 
for the quanti ty e - ' ( za+~-eo ) .  By (2.9) we have 

d ~, ,~f w;,+,., --dtg- lsa~.f(xi)(zai+'--eo)=g-2gd~. ~ (x , )  + O ( e )  (3.26) 
i i k = l  

We only sketch the argument  to get the limiting equation, since the 
procedure is the same as in the previous cases. We need to evaluate 
(w  d+ l'*(x) R~.) and e-2(Wd+ J 'k (x) )c  . 

The first of them gives the diffusive correction. We introduce ~d+ l.k 
and 77 d§ ~ defined by (2.17) and (2.4) with v replaced by ~. We have 

,v~ + "* = ,~';~§ "~ + ~ { , ' ( x , )  ~ 

+ Y, (u;'g~:g*, + ~ ' * (~- '  Ix,- xjl) IEU'~'(Xi) "Jv UY(.~tj)] )} 
7 

(3.27) 

Then, as before, 

f. + o ( ,  
/= I It 

(3.28) 

where ~?,a+ J., = ~,a+ t . k_~( f i ,  d+ ~.*). Because of time-reversal and rotat ion 
invariance of the Gibbs  state, the only correlations different from zero 
are  (4) 

f dx (~;,a+ ,.k(x ' r) ~; 'a+ t'/(0, 0) ) = 6#,a(z) (3.29) 

and ~ dr a ( r ) =  2~,'T 2. Therefore the conductivity x is given by 

K=2~-~fdT{fd~ (~k.iwd+l'k(x,T.,wd+l'l(o,o,)--d(Z(e~e)2)} (3.30, 

T -1 d+l We observe that, since 2~= - ( ~ . )  , 21 is given by TI(T-2).  
Using the previous arguments,  one can see that  the second term in 

(3.27) gives no contr ibution to (w  a+ l'kRe) in the limit e ~ 0 .  
The mean of the energy current on the Gibbs  state G~, i.e., 

( w a+ ~'* ) ~ ,  is nothing but (p~e,: + P~.) u~, (4) where p~e~. = ( z  a+ t )a~. 
Summarizing,  if we take the average of (3.26) with respect F~., we 

obtain 
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a-t l dx f(x)[p,e~(x, t)-p~e~.(x, 0)] 

= Jo [' ds ~ dxf(x){  - e - z  div[(p~.e~. + P,) u,](x, s)+ k Ar.(x,  s)} + O(e) 

(3.31) 

for any test function f. Hence, using (3.25), 

e-'p~O,e~+e-2u~p~Ve~+e-2 div(P,.ue)=xztTl +O(e) (3.32) 

after switching to the differential form of the equation for the sake of 
simplicity. Writing e~, P~., and u~. as series in e with coefficients e,,  P,,, and 
u,, (recall Uo=0, u, =u) ,  we have, using VP~ = 0  and div u = 0  

LHSof(3.32)=pO,e,+Podivu2+pu.Ve,+O(e)  (3.33) 

As the next step we eliminate div u2 by means of Eq. (3.25), which we 
rewrite in the form 

D,p, + p div u2 = O(e) (3.34) 

where D , f - O , f +  u-Vf. We get 

pD,e, -- p -  'PoD,p, = • /1 T, + O(e) (3.35) 

Let us note that only the internal energy contributes to e,,  because the 
kinetic energy is of order e 2. Hence e, can be written as a function of/9, 
and T, and we have 

(0e 0e 
POp, D 'P '+O-~ID'T '=xATI+O(e)  (3.36) 

The Boussinesq condition, stating that P~ is constant, implies 

op .l 
Op o D'p' + - ~  o D ' T I  = 0  (3.37) 

We can eliminate D,pj using above relation and, up to O(e), we get 

c(O, TI +u.  T , ) =  x ZlTl (3.38) 

where c is given by p times the specific heat at constant pressure. Equation 
(3.38) for u = 0  is the Fourier law. 
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4. A S Y M M E T R I C  S I M P L E  E X C L U S I O N  P R O C E S S  

In this section we briefly review the result in ref. 14 because it supports  
our previous considerations in the sense that  in a situation where the 
analysis can be made rigorous, the results confirm the arguments  presented 
here. 

In fact we consider a lattice gas with hard-core exclusion as a simple 
example of a stochastic system of particles for which it is possible to prove 
rigorously a sort of INS limit. The model is as follows: we consider a 
system of particles on a d-dimensional lattice 7/d, with periodic boundary  
conditions on a cubic region of size e - I  which we denote by T~. The 
particles j u m p  independently with intensity px, y>~0 from the site x to the 
site y if it is empty. We denote by r / (x )=  0, 1 the occupat ion number  per 
site; r/ is a configuration of the system and the configuration space is 
{0,1} ~ 

The generator  of the stochastic dynamics is 

~q'f = ~ c(x, y, q)Ef(qX.,.)- f(r/)]  (4.1) 
A'y 

with 

c(x, y, tT)= px..,,,(x)l-1 - , ( y ) ]  (4.2) 

and q"-" is the configuration in which q ( x )  and r/(),) are exchanged. We 
restrict ourselves to the nearest neighbor case, i.e., we assume that p_,. ,. are 
nonvanishing if and only if [ y - x l  = 1. We denote by e the unit vectors on 
the lattice with nonnegative components  and put p,, = p.,..,, if y = x + e and 
p_ , .  = p,...,.. It is also convenient to fix p,. + p_ , ,  = 2 for all e. 

This system has only one locally conserved field, the density. An invariant 
measure for the dynamics is the product  measure Z~-t 1-[.,.E ~ exp 2q(x). 

On the Euler time scale, for any smooth  function f on ~a ,  define 

r , ( f )  = sa ~.  . f ( s x )  tD. , , ( x )  (4.3) 
x E  ~r 

where r/,(x) denotes the number  of particles in x at time t. It has been 
proven in ref. 16 that r , ( f )  converges, as e--*0, to a limit given by 
S d z f ( z ) p ( z ,  t) ,  with p(z ,  t) a solution of the d-dimensional nonviscous 
Burgers equat ion 

a,p+F.W[p(1 - p ) ]  =0 (4.4) 

where F is the driving field given by F,. = p,, - p _ ,.. 
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To see diffusive effects, as usual we have to wait for microscopic times 
of order e -2. The analysis of the corrections of order e to (4.4) suggests 
that the macroscopic equation is the viscous Burgers equation. On the 
other hand, such an equation is not invariant under the diffusive scaling. 
The situation is quite similar to the one we described for the Navier-Stokes 
equation, but in a simpler case with only one conserved quantity. In fact 
the viscous Burgers equation is invariant if in addition to the diffusive 
scaling for space and time we consider perturbations of order e to the 
constant-density profile. Let 0 < 0 < 1 be a constant density and assume 
p = O-  eu. Then, on times e-  2t we expect for u an equation of the form 

Ou a OZu (4.5) O t + e - l v ' g u + F ' V u  2= ~ Di.JOziOzj 
i , .j= l 

with v = (1 - 2 0 ) F  and Di.j some diffusion matrix. We remove the diverging 
term by considering, instead of u, m( z, t)= u(z + e-~vt, t ), which satisfies 

Om a O2 m 
O---7+ F.Vm2= ~ D;,j Oz~Ozj (4.6) 

i , j = l  

The above considerations suggest that we introduce the rescaled 
empirical field defined for any test function f as 

z~ ( f )=~d- |  Z f(~x +t- |v t)[O-q: ' - t (x)]  
X E ~  

In ref. 14, using the "nongradient" method, r the entropy method, ~L8'3) 
and a multiscale analysis, the following theorem is proved: 

T h e o r e m .  Let q(t) be the stochastic process described before. 
Moreover, let d~> 3. We choose the sequence of initial measures as 

/a~=Z7 ' exp Z {[/~+e2o(eX)] r/(.,c)} 
X E ]-~ 

and let too(Z) be such that for any di > 0 and a n y f s m o o t h  and of compact 
support 

.lim o P r o b {  Z~o(f)- fdzf(z)mo(z)  > 6 } = 0  

Then there is a symmetric matrix D satisfying 

D > I  (4.7) 

822/74/5-6-4 
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(as a matrix), such that for any t~>0 and 6 > 0  

l i m P r o b  { z ~ ( f , - f  dx f (x )  u(z,t, > 6 }  = 0  

where re(z, t) is the unique smooth solution of the d-dimensional nonlinear 
diffusion equation (4.6) (the viscous Burgers equation) with initial 
condition too(Z). 

Remark 1. The result of the theorem is expressed as a law of large 
numbers, but with an extra factor e -~. Hence, as remarked before, it 
cannot hold in dimension less than 3, because the fluctuations are too big. 
Actually this is not the only reason for the restriction; in fact the multiscale 
analysis on which it is based fails in dimension less than 3. This is in 
agreement with the conjecture 14~ that the diffusion coefficient for the ASEP 
is infinite in dimensions 1 and 2. 

Remark 2. Consider the symmetric exclusion process with p,,= 
/~-,, = �89 + P-e)  = 1. The limit satisfies the diffusion equation with diffu- 
sion matrix 1. Hence the inequality (4.7) shows that there is a contribution 
to the diffusion coming from the asymmetry of the jumps. Since such an 
asymmetry may be interpreted as a "deterministic" motion added to the 
symmetric diffusion, its contribution to the diffusion is the analog of 
the viscosity for the Hamiltonian systems, where, of course, there is no 
symmetric part. More explicitly, the expression we get for D in ref. 14 is 
equivalent to the heuristic Green-Kubo formula for D given in ref. 19, 

f0 ~-�84 D,.e.=6,,,,,+(2Z)-' d t ~  [<tr,,Oo,,e'-"'a ....... +,,.>] (4.8) 
.x" 

where aoef(q)=f(r/~ The first term is the contribution coming from the 
stochastic motion and the second one is a time-integrated current-current 
correlation. We do not know, even in this case, how to give sense to the 
integral in (4.8) or equivalently to ~ - t ,  but we use properties of the sym- 
metric part of the generator (spectral gap, logarithmic Sobolev inequality) 
to obtain a variational formula for D which provides a rigorous version of 
the Green-Kubo formula. 

Remark 3. The strict analog of the incompressible limit is actually 
the case 0 = 1/2, for which v = 0 and the "velocity" is of order e. The case 
considered in ref. 14 is slightly more general because of the diverging trans- 
port term in the limit equation (4.5). It has been possible to manage it 
(because v is constant in space) by considering a frame of reference moving 
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with speed e-~v .  Hence this is an example (indeed very simple) in which 
one can give sense to the Navier-Stokes correction also in the presence of 
a diverging Euler contr ibution.  

R e m a r k  4. The above theorem is proved showing that the non-  
equil ibrium measure is close, in the sense of the relative entropy, to the 
local equil ibrium with parameter  of order e (up to a constant)  plus a 
nonhydrodynamic  correction of order e 2, whose form is determined by the 
nongradient  method and vanishing only in the symmetric case. This result 
is the counterpart  of assumptions (2.27)-(2.30) and (2.34). 
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